HAYHE SRS Fe8EIFERANE
2013%F3H26B (X)) ~29H(£) LEXRF HILEF v/ X

BFYang-MillsE R D FHLVERE &
JERT A ) B IR 18

LEHEE (KEK HEREZEV42—)

[e] B
sk 2

Ib“&

Ea»r

(?%K) RS (BHEFE) BRE(FEXR)

Talk based on: Phys. Rev. D 87, 054011 (2013), arXiv:1212.6512



contents

Introduction
A new formulation of lattice Yang-Mills theory

Lattice simulation

— Restricted field V dominance ( so called “Abelian” dominance)
— Non-Abelian magnetic monopole dominance

— chromo-electric flux tube from quark and antiquark source

— Magnetic (monopole) current due to magnetic monopole
condensation

Type of Yang-Mills vacuum
Summary and outlook



Introduction
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Quark confinement follows from the area law of the Wilson loop

average [Wilson,1974]
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dual superconductivity

B Dual superconductivity is a promising mechanism for quark

confinement. [Y.Nambu (1974). G.’t Hooft, (1975). S.Mandelstam, (1976) A.M.
Polyakov (1975)]

superconductor dual superconductor

» Condensation of electric charges » Condensation of magnetic monopoles
(Cooper pairs)

» Meissner effect: Abrikosov string » Dual Meissner effect: formation of a
(magnetic flux tube) connecting hadron string (chromo-electric flux
monopole and anti-monopole tube) connecting quark and antiquark

> Linear potential between monopoles » Linear potential between quarks

l“

1) M < Electro- magnetic duality >
-




The evidence for dual superconductivity

To establish the dual superconductivity picture, we must show that the
magnetic monopole plays a dominant role for quark confinement:
Many preceding studies based on the Abelian projection: Uy, = XxuVxu

The gauge link is decomposed into the Abelian (diagonal) part V and the remainder
(off-diagonal) part X
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The evidence for dual superconductivity(cont’)

O Abelian dominance in the string tension [Suzuki & Yotsuyanagi, 1990]

O Abelian magnetic monopole dominance In the string tension [Stack,
Neiman and Wensley,1994][Shiba & Suzuki, 1994]

O Measurement of (Abelian) dual Meissner effect

@ Observation of chromo-electric flux tubes and Magnetic current due
to chromo-electric flux

€ Type the super conductor is the order between Type | and Type I
[Y.Matsubara, et.al. 1994]

Problems:
v These are only obtained in the case of special gauge such as maximal
Abelian gauge (MAG),

v" gauge fixing breaks the gauge symmetry as well as color symmetry
(global symmetry).




A new lattice formulation

* We have presented a new lattice ferunulation of Yang- Mills theory,
that can estabilish “Ubelian’ dominance and magnetic moenapole
deminance in the gauge independent way (gauge-invariant way )

We have proposed the decomposition of gauge link,

Ux,u — Xx,uvx,u
which can extract the relevant mode V for quark confinement.

* For SU(2) case, the decomposition is a lattice compact representation of the
Cho-Duan-Ge-Faddeev-Niemi-Shabanov (CDGFNS) decomposition.

* For SU(N) case, the formulation is the extension of the SU(2) case.

The path integral formulation by Kondo-Murakami-Shinohara;
SU(2) case: Eur. Phys. J. C 42, 475 (2005), Prog. Theor. Phys. 115, 201 (2006).
SU(N) case: Prog.Theor. Phys. 120, 1 (2008)



B SU(2) Yang-Mills Theory

» \We have presented the compact representation of Cho-Duan-Ge-Faddeev-
Niemi (CDGFN) decomposition for SU(2) case on a lattice, I.e., the
decomposition of gauge link, U=XV.

quark-antiquark potential from Wilson V(R)=c+ % +oR

loop operator shows o

* gauge-independent “Ubelian” ot | 16%Iattice,
deminance : the decomposed V field ] §0= 240,
reproduced the potential of original o\ Ymified - l | 50conf
YM field. Lt \ P
oruil ~ oy (93 £16%) > - V field
deminance :the string tensionisalmost =~ .| .~ -\ )
reproduced by only magnetic L | Monopole part

monopole part. e

T full ™~ Omonopole (88 + 13%) arXiv:0911.0755 [hep-lat],
Phys.Lett. B645 67-74 (2007)



A new formulation of lattice SU(3) Yang-Mills theory



A new formulation of Yang-Mills theory (on a lattice)

Decomposition of SU(N) gauge links
« The decomposition as the extension of the SU(2) case.

« For SU(N) YM gauge link, there are several possible options of
decomposition discriminated by its stability groups:

O SU(2) Yang-Mills link variables: unigue U(1) CSU(2)
O SU(3) Yang-Mills link variables: Two options
maximal option : U(1) X U(1) CSU(3)
v Maximal case is a gauge invariant version of Abelian projection in the
maximal Abelian (MA) gauge. (the maximal torus group)
minimal option : U(2)=SU(2) X U(1) CSU(3)
v Minimal case is derived for the Wilson loop, defined for quark in the

fundamental representation, which follows from the non-Abelian
Stokes’ theorem




minimal option::Wilson loop for the fundamental representation

« Two reformulations written in terms of different variables are
equivalent to each other. This is simply the choice of the
coordinates in the space of gauge field configurations.

* The difference between two options, i.e, maximal or minimal,
arises when we choose an operator to be calculated.

— Wilson loop operator is uniquely defined by giving a
representation, to which the source quark belongs.

— the Wilson loop operator in the fundamental representation
leads us to the minimal option

— which i1s shown in the process of deriving a non-Abelian

Stokes theorem for the Wilson loop operator by Kondo PRD77
085929(2008)



The decomposition of SU(3) link variable: minimal option

Wc[U] = Tr|:P ] Unn J/Tr(l) Uy hx
(X, X+1)eC M-YM
Uxuy = XxuVxu SU®)w x [SUR)U2)],

Xreduction }
UX,,U - U;(,,u — QXUX,,uQ;rH,u

Vx"u - V;(”u — QxVx’HQj(+‘u Yang-Mills

, n theory
X = X [0

SUB) Uz SU@)oo Vxun Reu
\/QX < G — SU(N) <equipo|lent>

WelVI =Tr| P || Viu |[Tr(@)

NLCV-YM

Wc[U] = const.Wc[V] !




Defining equation for the decomposition

Phys.Lett.B691:91-98,2010 ; arXiv:0911.5294 (hep-lat)

Introducing a color field hy = £(A8/2)&ET € SU(3)/U(2) with & € SU(3), a set of the

defining equation of decomposition Uy, = Xx .V 1s given by

D&[VIhe = £ (Viuhesy — hxVi,) = 0,

gx = e exp(—af hy — i Zi aul’) = 1,

which correspond to the continuum version of the decomposition, A,(X) = V,(X) + Xu(X),

D.[V.()Ih(x) =0,  tr(X.()h(x)) = 0.

Exact solution (N=3)

A A 1/N ~ ~ -1/N
Xx"u = L;r(,‘u(det I—X,y) g;l VX,.U - Xj(,qu, == ngx,‘qu,(det Lx,‘u)

A -1

Cy = (,/Lx,ﬂLi,u) Ly

2 —
Lo = NE=2N29 4 vy [ENED) g, Uzt

+ 4(N = 1)hUy uhye, Uz

continuum version
by continuum limit

Vu(X) = Ap(X) —
Xu(X) =

2(N 1) 2(N £y)

[h(X), [h(X), Au(¥)]] —ig™
2(N 1)

[0uh(X), h(X)],
2(N 1)

[h(¥), Th(), Au()]] +ig™

[04(X), h(X)].




The defining equation and implication to

the Wilson loop for the fundamental representation
K.-l. Kondo, Phys.Rev.D77:085029,2008

K.-l. Kondo, A. Shibata arXiv:0801.4203 [hep-th]
By inserting the complete set of the coherent state |£x, A) at every site on the Wislon loop

C, 1 = [|&x, AYdu(Ex)(A, Ex| we obtain

Wc[U]=tr< [T U ) = TT [ duEA EUxulénm A

<x>eC <X, X+pu>C

= T Jdu@oA XS0 EV xuéun)l A)

<X, X+u>C

where we have used %i = 1.

For the stability group of H, thel 1st defining equation '

EViué' € H < [éivx,ufxw’l:l] <= Vi = Viuhxiy = 0
implies that |A) is eigenstate of EXVy uExsy
(&Vx,uéwaA) - |A>ei¢1 el = <A|§;Vx,u§x+u|/\> = (A, §X|VX,M|§X+/1’A>-

Then we have

WelU] = [du@opX:dl [T (A exVauléom A)

<X X+pu>eC

P &1 = | | (A ExlXxulénn A)

<x>eC




Reduction Condition

« The decomposition is uniquely determined for a given set of link variables
Uy . describing the original Yang-Mills theory and color fields.

« The reduction condition is introduced such that the theory in terms of new
variables is equipollent to the original Yang-Mills theory

» The configuration of the color fields h, can be determined by the reduction
condition such that the reduction functional is minimized for given Uy,

Frealhs; Ux] = X5, tr{(D5[Ulhx) (DE[Uh) }

SU3)e x [SURB)U(2)], —» SU(3)w-0
B Thisis invariant under the gauge transformation 6=w
B The extended gauge symmetry is reduced to the same symmetry as the

original YM theory.
B \We choose a reduction condition of the same type as the SU(2) case



Non-Abelian magnetic monopole

From the non-Abelian Stokes theorem and the Hodge decomposition, the
magnetic monopole is derived without using the Abelian projection

WelA] = ..[a’/.z(é,‘)]Z exp (—z‘g J. s dSHv /% tr(2h(x)F W[V](x)))

- Jldu@lcexp (g Nk (6Z5) + i ML 6,3 )
magnetic current k = 0*F = *dF, Zs = 0*OsA~l

electric current j = oOF, N5 = 00zA

A = dé + éd, Oz = jz d>S# (6 (x))82(x — x(0))

k and j are gauge invariant and conserved currents; 6k = 0j = 0.

K.-1. Kondo PRD77 085929(2008)

The lattice version is defined by using plaquette:

@8, = —arg Tr[ (%1 _ ‘/2§ hx>vx,yvx+y,ﬂv;+v,,,,v;,v}



Test of dual super conductivity on a lattice

« Linear potential:
» Restricted field V dominance ( so called “Abelian” dominance)
» Non-Abelian magnetic monopole dominance

« Chromomagnetic flux: Measurement of the chromo-magnetic field
» chromo-electric flux tube from quark and antiquark source
» Magnetic (monopole) current due to magnetic monopole condensation



B SU(3) Yang-Mills theory

In confinement of fundamental quarks, a restricted non-Abelian variable V,
and the extracted non-Abelian magnetic monopoles play the dominant role
(dominance in the string tension), in marked contrast to the Abelian

projection.
gauge independent “Ubelian’
dominance
(9]
9
OV - 0,78 -0.82
Gauge independent non-Ubalian
mancple dominance
(9]
gu 0,85
9
oM~ 0.72-0.76

in R. G. Edwards, U. M. Heller,

and T. R. Klassen, Nucl. Phys. B517, 377 (1998).
(based on Abelian projection)
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FIG. 1 (color online). SU(3) quark-antiquark potentials as
functions of the quark-antiquark distance R: (from tob to bottom)

(1) full potental V_,ru-':']l (red curve), (1) restricted part V, (R)
(zreen curve), and (i) ma;gnetic-monopole part V(R) (blue
curve), measured at 8 = 6.0 on 24* using 500 configurations
where € is the lattice spacing.

PRD 83, 114016 (2011)



Chromo-electric flux

rWLUpLD) 1 (r(M)tr(Up))

PW = " rw)) )
;
By Adriano Di Giacomo et.al. tl’(UpLWL )
[Phys.Lett.B236:199,1990] [Nucl.Phys.B347:441-460,1990] Y -
Z Up
Gauge invariant correlation function: This is | i
settled by Wilson loop (W) as quark and !
antiguark source and plaquette (Up) connected by /
Wilson lines (L). N is the number of color (N=3)
N

-0 tr(igeFwlWLT) |
pw = tr(LWLT) o <g€]:“v>qq

Fuv(x) = \/%pw(x)



Chromo-electric flux

YM gauge configurations: by standard Wilson action on a 24* lattice with f=6.2.
The gauge link decomposition: the color field configuration is obtained by
solving the reduction condition of minimizing the functional , and the
decomposition is obtained by using the formula of the decompoition.
measurement of the Wilson loop: APE smearing technique to reduce noises.
measure correlation of the restricted U(2) field, as well as the original YM field.

Original YM filed « Restricted U(2) field
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Chromo-electric (color flux) Flux Tube

Original YM filed Restricted U(2) field
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A pair of quark-antiquark is placed on z axis as the 9x9 Wilson loop in Z-T plane.
Distribution of the chromo-electronic flux field created by a pair of quark-antiquark is
measured in the Y-Z plane, and the magnitude is plotted both 3-dimensional and the
contour in the Y-Z plane.

Flux tube is observed for the restricted U(2) field case.




Magnetic current induced by quark anc

Yang-Mills equation (Maxwell equation) for V, field,
the magnetic monopole (current) can be calculated as

k = *dF[V],

F[V] is the field strength 2-form of V, field
d the exterior derivative and * denotes the Hodge dual.

k0=

antiquark pair

q
le
~—_
e
P
7
7 —= k
[Z
X
®q

signal of the monopole condensation 007

the field strength is given by F[V] = dV 006
the Bianchi identity : k =*d?V =0
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Figure: (upper) positional relationship of

chromo-electric flux and magnetic current.
(lower) combination plot of chromo-electric 0.01
flux (left scale) and magnetic current(right
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Type of Yang-Mills vacuum



Type of dual superconductivity (Ginzburg-Landau theory)

$9
Ginzburg-Landau equation T
Ud x A 42172 — =
D.D“¢ 1(45.45 puelrc)g = 0 s
Ampere equation = =
0"Fuv +i9[¢*(Dpg) — (Dug) 9] = 0 =g
dq
J.R.Clem J. low Temp. Phys. 18 427 (1975) oly] = CZDO L y
«N. o o . T ﬁl ‘/W

The profile of chromo-electric flux in the super conductor is given by

@y 1 Ko(R/A) B
B = e g R

K, :the modified Bessel function of the v-th order, A the parameter corresponding to the
London penetration length, & a variational core radius parameter, and ®, external flux.

¢ this formula is for the super conductor of U(1) gauge field.




Ez/e?

Type of dual superconductivity (Ginzburg-Landau parameter)
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Type of dual superconductivity: fitted solutions

— /y2 _|_§2

E:[y]
y [tm) 2w EA Ky (EIA)
0 0.1 0.2 0.3 0.4 0.5 06 5 1 (é )
D.1E L 1] T T L 1]
osgly] = 52 J% P
tricted
01 | N ghestrcte Jy:+¢
' 0.25
o LI:' e
008 L . YM filed
N 008 f " -
Ty
0.04 \
< 1 0.1
\\"\
0.02 | 1 ane
S T Restricted filed
0 i i I I 4= —— 0
0 2 3 4 7 8 9
yiE
ae? be C Me Cle éle ® K
SU(3) YM field | 0.804 + 0.04 | 0.598 + 0.005 | 1.878 £ 0.04 | 1.672 +0.014 |3.14 +0.09 |3.75+0.12 | 4.36 £0.3] 0.45 + 0.01
restricted field | 0.435+0.03 | 0.547 £0.007 | 1.787 £0.05|1.828 +0.023|3.26 £0.13(3.84+0.192.96 +0.3{ 0.48 +0.02




type of the dual superconductivity(summary)

OYMfield typel:

k =0.45+0.01. A = 0.1207(17)fm & = 0.2707(86)fm
consistent with Cea, Cosmai and Papa, PRD86(054501) (2012)

O restricted U(2) field (minimal option) type | :
k =0.48+0.02, A =0.132(3)fm & = 0.277(14)fm.

OO comparison with other results:
» MA gauge Abelian Projection : border of type | and type Il x=0.5 —1
Yoshimi Matsubara, Shinji Ejiri and Tsuneo Suzuki, NPB Poc. suppl 34, 176 (1994)
> YM field: type Il x<=1.2-1.3
N. Cardoso, M. Cardoso, P. Bicudo, arXiv:1004.0166

O SU(2) case



B GL parameter and type of dual superconductor SU(2)

Talk by S.Kato, 27aRE8

rky = 0.717 = 0.208 ry = 0.491 4= 0.150

This result shows the dual superconductor for the SU(2) lattice Yang-Mills

theory is the border between type I and type II.

Penetration depth A and coherence lemgth ¢ is obtained as (g(p=2.5)=0.0832fm),

Ay = 0.107(12) fm, &y = 0.149(5)fm
Ay = 0.106(14) fm, &y = 0.217(8)fm

B comparison with other results:
-Cea,Cosmai Papa(2012); YM, p=2.52,2.55,2.6, L*=20%.
k= 0.467 £ 0.310, A = 0.0.1135(27) fm

- Suzuki, et al(2009); Improved Iwasaki action, MA gauge, L4=324,40*
k= 0.735(5),0.841(4),0.771(6) for3 = 1.10, 1.28,1.40

-Bali,Schlichter,Schilling(2009); p=2.5115, L4=324

k= 0.594(\ = 1.84750, & = 3.107 32—~ A = 0.153fm, £ = 0.258fm

2013/3/28

28



Summary

O We investigate our proposal: non-Abelain dual superconductivity
picture for SU(3) Yang-Mills theory as the mechanism of quark
confinement.

O Applying a new formulation of Yang-Mills theory, we study non-
Abelian dual Meissner effect.

» Extracting the dominant mode by using the decomposition of link
variables: U=XV : decomposition based on the stability group U(2)

¢ restricted U(2) field (\-field) dominance in string tension
“* non-Abelian magnetic monopole dominance in string tension

¢ Observation of chromo-electric flux tube and non-Abelian magnetic
current (monopole) induced from quark-antiquark pair
s Determination of type of the dual superconductivity : rather type |




outlook

¢ Interaction among chromo-electric flux tubes:
» Attractive (type I) of repulsive (type Il) ?
» Reflecting internal non-Abelian character?

s Confinement and deconfienment phase transition in the finite
temperature

» Phase transition and magnetic monopole condensation
» Phase transition of dual super condacter in finite temperature




Thank you for your attention.
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Field strength

0.1

0.08

0.06
K

0.04

0.02

Measurement by three types of operators

T
*
1 1 1

%

|
F[A]_14
F[V]_14
anatomy F_14 #*

2 4 6
distance [x]

Comparison of the correlation for
the different Wilson line
operator.

F[A],, : Wilson line by using the
original YM field (U).

F[V],, : Wilson line by using the
decomposed restricted U(2) field
(V).

Anatomy F,,: Wilson line by
using the original YM field as the
guark source, and the restricted
U(2) field (V) as the probed part
(LV,LY) .



The defining equation and implication to

the Wilson loop for the fundamental representation
K.-l. Kondo, Phys.Rev.D77:085029,2008

K.-l. Kondo, A. Shibata arXiv:0801.4203 [hep-th]
By inserting the complete set of the coherent state |£x, A) at every site on the Wislon loop

C, 1 = [|&x, AYdu(Ex)(A, Ex| we obtain

Wc[U]=tr< [T U ) = TT [ duEA EUxulénm A

<x>eC <X, X+pu>C

= T Jdu@oA XS0 EV xuéun)l A)

<X, X+u>C

where we have used %i = 1.

For the stability group of H, thel 1st defining equation '

EViué' € H < [éivx,ufxw’l:l] <= Vi = Viuhxiy = 0
implies that |A) is eigenstate of EXVy uExsy
(&Vx,uéwaA) - |A>ei¢1 el = <A|§;Vx,u§x+u|/\> = (A, §X|VX,M|§X+/1’A>-

Then we have

WelU] = [du@opX:dl [T (A exVauléom A)

<X X+pu>eC

P &1 = | | (A ExlXxulénn A)

<x>eC




The defining equation and
the Wilson loop for the fundamental representation (2)

By using the expansion of X ,: the‘ 2nd defining equaitonl, tr(X,(X)h(x)) = 0, derives
<A, éx |XX,,LL|§X+‘u; A> = tr(XX,‘u)/tr(l) + Ztr(XX"uhx)
= 1 + 2igetr(X,(X)h(x)) + O(e?).

Then we have p[X;&] = 1 + O(€?).
Therefore, we obtain

WelU] = [du@) [T (A éxVaulxm AY = WelV]

<X, X+u>€C

By using the non—Abalian Stokes theorem, Wilson loop along the path C is written to area
integral on ¥ :C = 0% ;

Wcl[A] = tr|:Pexp(—ig 3§ dxﬂAH(x)> :|/tr(1) = jduz(éj) exp(js_ s dSﬂVFMV]),
C T

(no path ordering), and the decomposed Vx, corresponds to the Lie algebra value of Vx
and the field strength on a lattice is given by plaquet of Vy,




Non-Abelian magnetic monopole loops: 244 laiitce 3=6.0

Projected view (x,y,z,t) =(x,y,z)

(left lower) loop length 1-10
(right upper) loop length 10 -- 100
(right lower) loop length 100 -- 1000




The gauge boson propagator D} (x —Y) is related to the Fourier transform of

the massive propagator
4 .
DX -Y) = (Xu00Xu)) = [ 5 Are VDR (k)

The scalar type of propagator as function r should behave for large My as

_d%K pikex-y) 3 3/M

e—Mxr

DX(r) = (Xu(OXu(y)) = ~
H H
(2r)* k2 +M§ — 2(2m)¥2 r32
distance r [fm]
1] 0.45 0.885 1.3 1.80
10 F ! ¥ ! ¥ 1 |. 1 ] |IE
Mass inthe unit [a )
- M, =174+/-0.189
sd il . My = 1.67 +/- 0.233
1 by -3 .. .h.lx=E_EE+s'-ﬂ.1?E
"-n - oy W
g * R,
A
8 01 F
W
ol
L , St
001 T |
T
0.001 L L L

o0 03 1 1. 2 25 3 35 4
distance r o I"Q]

=Af= b=5.70
=Ah= b=5.85
=AA= b=6.00
fiti = A8
=V\= b=5.70
== b=5.85
<V b=6.00
fitting <VV=
=¥ XK= b=5.70
<XX> b=5 B85
=¥ XK= b=6.00
it =



4
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Ml results of fitting

Fitting function:

¢ p?
Euly) = aKo[ViP2 + 08, a= 22 /Ky [a].
2T «
Original Yang-Mills field restricted field
ylfm] ylfm]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.1 * I ' ' ' ' "Yang-Mills’ - m | 0.1 I ' ' ' ' restricted’ - W |
ang
Clem fit Clem fit
0.08 - . 0.08 -
%]
0.06 . 0.06 4
‘u“jN .
0.04 - A . 0.04 -
0.02 . . 0.02
0 ) ) | T = s ] T 0 ) ) | T e =
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
y/e y/e
a H &
link field U 0.341(0.167) 0.781(0.087) 1.308(0.393)

restricted field V' 0.368(0.249) 0.782(0.109) 1.748(0.548)
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B GL parameter and type of dual superconductor Talk by Kato, 27aRES

rky = 0.717 = 0.208 ry = 0.491 4= 0.150

This result shows the dual superconductor for the SU(2) lattice Yang-Mills
theory is the border between type I and type II.
Penetration depth A and coherence lemgth ¢ is obtained as (g(p=2.5)=0.0832fm),

Ay = 0.107(12) fm, &y = 0.149(5)fm
Ay = 0.106(14) fm, &y = 0.217(8)fm

B comparison with other results:
-Cea,Cosmai Papa(2012); YM, p=2.52,2.55,2.6, L*=20%.
k= 0.467 £ 0.310, A = 0.0.1135(27) fm

- Suzuki, et al(2009); Improved Iwasaki action, MA gauge, L4=324,40*

k= 0.735(5),0.841(4),0.771(6) for3 = 1.10, 1.28,1.40
-Bali,Schlichter,Schilling(2009); p=2.5115, L4=324

k= 0.594(\ = 1.84750, & = 3.107 32—~ A = 0.153fm, £ = 0.258fm
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